
Source:
Documentation:

github.com/ubc-library-rc/dryad2dataverse
ubc-library-rc.github.io/dryad2dataverse/

For those who wish to have a look at the source material during the presentation

Speaker notes

What is it?
A stand-alone application
A Python library

Tool(s) to facilitate translation of data from Dryad to Dataverse, from start to finish
Both a downloadable piece of software and (hopefully) a development tool
[Presumably] easy to use

Speaker notes

Rationale
Collection consolidation
Findability

UBC's "primary" research data repository is a Dataverse repository at .

Other UBC users have deposited their data sets into ; there is a large UBC contingent of data there — over 500
studies

Collection is split between two (or more, really) repositories: 50% Dryad, 50% Dataverse. That's not ideal.

Scholars Portal Dataverse is already aligned with Geodisy for national-level geospatial searching

SP Dataverse is connected to UBC's Summon instance

Problems that can arise

Except maybe the citation count that researchers now have to check their citations in more than one place, but could
be resolved with GraphQL [Eugene]

Speaker notes

Scholars Portal

Dryad

Why not transfer everything manually?
Manual transfer of metadata would be painful and slow

A software based solution should result in less data loss and human error. Or possibly more. However, it's easier to
automate. So, software.

As all material in Dryad is public domain data (CC0) by the terms of their license agreeement, so there's no
impediment to adding these data sets to UBC's collection at Scholars Portal.

Speaker notes

Desired goals
Simple
Modular
No overhead

Simple enough to be used by users with little or ideally no programming experience
Modular - not all components shold be required
System neutral
No requirement of server overhead
Ideally, a piece of software that would run from the command line with basic information supplied by an end user
Should be able to be daemonized or scheduled

Speaker notes

Technical overview
API to API
A database for persistence

Dryad and Dataverse both have relatively well documented Application Programming Interfaces (APIs), so it would
make sense to use a programmatic approach to transfer the data.

The software sits between the two APIs and transfers data from one to the other.

A tiny database monitors changes

Speaker notes

The steps
1. Create a metadata crosswalk.

UBC Research Commons has experience with Dataverse mapping from both a migration from moving research data
from UBC to Scholars Portal and from an old Dataverse installation to a new one. This is arguably the most important
step.

2. Analyze the Dryad collection

Using the Dryad API, analyse the collection to see if file transfers to Dataverse make sense (ie, are there too many
large files).

3. User the native Dataverse JSON as import. More complex, but complete control over what goes where, which is not
possible if using DDI or schema.org JSON

4. Start programming

Speaker notes

End result
Pure Python
Limited dependencies
A complete script for those who hate programming

Pure Python 3 (v3.6 or higher)
Limited dependency on external libraries
Three modules
Serialize -> Transfer -> Monitor
Script: dryadd.py

Speaker notes

The components
serializer
transfer
monitor

The Python library has three primary components, working in a sequence. In essence, a translator module, an upload
module and a monitor.

Speaker notes

dryad2dataverse.Serializer
>>> import dryad2dataverse.serializer
>>> i_heart_dryad = dryad2dataverse.serializer.Serializer('doi:10.5061/dryad.2rbnzs7jp')
>>> i_heard_dryad.dvJson

['datasetVersion']['metadataBlocks']['citation']['fields'][x]['value']

Serializer module connects to a Dryad instance and converts the Dryad JSON output to Dataverse JSON output
Also includes the file JSON
Technically hardest part; Dataverse JSON is "complex".

Eg: dv['datasetVersion']['metadataBlocks']['citation']['fields'][x]['value'], where x is an
integer

Complex hierarchical struture based on the underlying database rather than a human-parseable JSON object

Speaker notes

dryad2dataverse.Transfer
>>> import dryad2dataverse.transfer
>>> dv = dryad2dataverse.transfer.Transfer(i_heart_dryad)
>>> dv.download_files()
>>> dv.upload_study(targetDv='dryad')
>>> dv.upload_files()

Transfers to Dataverse are not necessarily straightforward; it's not possible to update a single metadata field, etc.
Dryad2dataverse uses the Transfer object to hopefully get around many of the issues involved

Transfers require some sort of Dataverse privileges
Transfer is dependent on the Serializer
Takes a Serializer instance (ie, a Dryad study) as an input
Copies the entire Dryad study to Dataverse, using the mappings provided by Serializer
Puts a copy of the Dryad JSON in the dataverse record so that comparisons can be made if required
Assigns the "correct" date to a study
Moves files over as-is as much as possible; they are not unzipped as Dataverse does by default
Tries to mirror the Dryad structure as much as possible
Creation of .tab files is dependent on settings of the target Dataverse installation

Speaker notes

dryad2dataverse.Monitor
>>> monitor = dryad2dataverse.monitor.Monitor()
>>> monitor.status(i_heart_dryad)
{'status': 'new', 'dvpid': None}
>>> monitor.status(i_still_heart_dryad)
{'status': 'unchanged', 'dvpid': 'doi:99.99999/FK2/FAKER'}
>>> monitor.diff_files(i_still_heart_dryad)
{}
>>> monitor.update(transfer)
>>> monitor.set_timestamp()

The first two modules are fine for one-off transfers

Dryad studies, like Dataverse, are not necessarily constant

To track changes over time, the previous state must be kept so that there is a method of comparison

Uses a portable sqlite3 database which stores Dryad and Dataverse metadata

Monitors both file and metadata changes

Produces a report of what has changed

In conjunction with the Transfer object, can work to update material that has already been transferred.

Speaker notes

scripts/dryadd.py
The no-programming solution
Standalone programs available for Intel Mac and Windows

A command line program to convert, upload and monitor Dryad studies
Takes institutional as input
Requires zero knowledge of Python (with the exception of installation)
Completely self-contained
Auto database copy on each run

Speaker notes

ROR

Features

Email notification of new file changes and updates to multiple people
Options to skip problematic studies
Can be run at any interval desired by the user

Speaker notes Limitations

File spoofing is not perfect by any means. The best solution is to be a super-user and turn of file processing for
problematic file types
Files that are larger than the maximum upload size are ignored. This means that some files may not be transferred.
This affected less than 2% of UBC's studies.
By design studies are not published. This allows a manual curation step.
Does not track and merge any metadata changes made on the Dataverse side
Date issues: Although publication dates can be changed in the citation, they can't be changed as publication dates,
which are exported to summon. "Publication" dates are Dataverse ingest dates.
The citation uses Dataverse's distributionDate which matches the most recent Dryad's publicationDate.

Specific limitations in Dryadd.py

Auto-mailer setup can be tricky and annoying if using Google for email
Problems with Dryad API (ie, bad information out) may necessitate manually skipping problem studies

Speaker notes But wait! There's more
Bulk release utility dryadd.py now available as standalone programs
Doesn't even require dryad2dataverse

See it in action
https://dataverse.scholarsportal.info/dataverse/UBC_DRYAD

ubc-library-rc.github.io/dryad2dataverse/
Paul Lesack
University of British Columbia Library Research Commons

UBC is located on the traditional, ancestral, and unceded territory of the
xʷməθkʷəyə̓m (Musqueam), səli̓lwətaɁɬ təməxʷ (Tsleil-Waututh),
Stz’uminus, S’ólh Téméxw (Stó:lō), Skwxwú7mesh-ulh Temíxw̱
(Squamish), and Coast Salish peoples.

paul.lesack@ubc.ca

